Universal Compute Coordination for Autonomous Systems โ unified access to distributed compute resources for real-time agent operations.
RFC stageReal-time compute needs are distributed across incompatible systems:
Agents need seamless access to compute resources without managing this complexity.
compute.md provides a standard interface for all compute resources. Every provider โ from distributed networks to edge devices โ becomes accessible through one consistent protocol.
GET /nodes?resource_type=GPU_A&max_price=2.50&latency_band=metro
Find available compute by resource type, price, location, latency requirements โ across all providers.
{
"endpoint": "/providers",
"unified_access": true,
"providers": [
{
"name": "distributed_gpu_network",
"type": "decentralized_compute",
"available_resources": 14000,
"resource_types": ["GPU_A", "GPU_B", "GPU_C"],
"price_range": "$0.79-2.49/hr",
"payment": ["crypto", "fiat"],
"latency_band": "metro"
},
{
"name": "peer_network_alpha",
"type": "decentralized_cloud",
"active_deployments": 8400,
"cpu_cores": 47000,
"avg_savings": "85%",
"payment": ["TOKEN_A", "STABLE_COIN"],
"latency_band": "regional"
},
{
"name": "marketplace_beta",
"type": "p2p_marketplace",
"hosts": 4700,
"interruptible": true,
"price_range": "$0.20-1.50/hr",
"verification": "benchmark_based"
},
{
"name": "serverless_provider",
"type": "serverless_compute",
"regions": 30,
"cold_start": "2-5s",
"autoscale": true,
"spot_discount": "70%"
}
]
}POST /orchestrate
{
"requester": "agent_model_trainer",
"workload": {
"type": "batch_processing",
"compute_hours": 1000,
"memory_gb": 80,
"interconnect": "optional"
},
"constraints": {
"max_price_per_hour": 2.00,
"latency_band": "regional",
"redundancy": 2
}
}
// Returns optimized allocation
{
"plan_id": "plan_7k3h9s",
"allocations": [
{
"provider": "marketplace_beta",
"nodes": 12,
"resource_type": "GPU_C",
"price": "$0.44/hr",
"allocation": "60%"
},
{
"provider": "distributed_network",
"nodes": 4,
"resource_type": "GPU_A",
"price": "$0.79/hr",
"allocation": "40%"
}
],
"total_cost": "$580",
"estimated_time": "14 hours",
"sla": "99.5%"
}{
"endpoint": "/capabilities",
"description": "Normalized performance metrics",
"resource_profiles": {
"GPU_TYPE_A": {
"fp16_tflops": 989,
"fp32_tflops": 67,
"int8_tops": 3958,
"memory_gb": 80,
"bandwidth_gb_s": 3350,
"interconnect": "HighSpeed_900GB/s",
"typical_price": "$2.49/hr"
},
"GPU_TYPE_B": {
"fp16_tflops": 82,
"fp32_tflops": 82,
"int8_tops": 660,
"memory_gb": 24,
"bandwidth_gb_s": 1008,
"interconnect": "Standard_64GB/s",
"typical_price": "$0.44/hr"
}
},
"latency_bands": {
"LAN": "1-3ms",
"metro": "3-10ms",
"regional": "10-30ms",
"global": "30-100ms"
}
}| Provider Type | Scale | Price Range | Latency Band | Status |
|---|---|---|---|---|
| Distributed GPU Network | 14,000+ GPUs | $0.79-2.49/hr | metro | Live |
| Decentralized Cloud | 8,400+ nodes | $0.10-0.50/hr | regional | Live |
| P2P Marketplace | 4,700+ hosts | $0.20-1.50/hr | regional | Live |
| Serverless Platform | 30+ regions | $0.39-3.89/hr | metro | Live |
| Traditional Cloud | Global | $1.20-8.00/hr | regional | Live |
| Edge Fleet | Experimental | TBD | LAN | Future |
All providers normalized through one protocol. Edge/vehicle compute marked as future experimental.
// Agent needs 1000 GPU-hours for model training
// Discover cost-effective options across all providers
const options = await fetch('https://compute.md/discover?gpu_hours=1000&min_memory_gb=24&max_price=1.00&sort=price_asc')
.then(res => res.json());
// Book distributed allocation
const bookCompute = async () => {
try {
const response = await fetch('https://compute.md/book', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
plan: 'distributed',
allocations: [
{ provider: 'marketplace_a', gpu_hours: 600, gpu_type: 'TYPE_B' },
{ provider: 'network_b', gpu_hours: 400, cpu_fallback: true }
],
payment: { method: 'STABLE_COIN', stream: true }
})
});
const booking = await response.json();
console.log(`Booked ${booking.total_gpu_hours} hours`);
console.log(`Total cost: $${booking.total_cost}`);
console.log(`Savings vs traditional: ${booking.savings_percent}%`);
// Output: "Savings vs traditional: 78%"
} catch (error) {
console.error('Error booking compute:', error);
}
};# Load balance inference across providers for redundancy
POST /orchestrate
{
"workload": "large_model_serve",
"requests_per_second": 100,
"redundancy": 3,
"providers": ["network_a", "platform_b", "marketplace_c"]
}
# Automatic failover and rebalancing
{
"endpoints": [
"https://network-gateway.compute.md/infer",
"https://platform-gateway.compute.md/infer",
"https://marketplace-gateway.compute.md/infer"
],
"load_balancer": "https://compute.md/lb/abc123",
"health_check": "/health",
"auto_failover": true
}# Agent monitors and optimizes resource usage
while True:
prices = requests.get('https://compute.md/prices/spot').json()
# Find optimal allocation opportunities
for resource_type in ['GPU_A', 'GPU_B', 'GPU_C']:
p2p_price = prices['p2p_market'][resource_type]
cloud_price = prices['traditional'][resource_type]
if cloud_price > p2p_price * 3:
# Allocate on P2P network
capacity = book_p2p(resource_type, hours=10)
listing = optimize_allocation(
capacity,
efficiency_target=0.95,
marketplace='compute.md/exchange'
)
savings = cloud_price - p2p_price
print(f"Optimization: {savings} per hour saved")Currently, agents face fragmented compute landscapes with different interfaces and requirements. Distributed networks offer significant cost efficiencies but require diverse technical integrations.
With compute.md, compute becomes seamlessly accessible:
{
"security_model": {
"sandboxing": ["WASM", "Container_Tech", "Microvm"],
"attestation": ["TEE_Type_A", "TEE_Type_B", "TEE_Type_C"],
"workload_signing": "ECDSA + DID",
"resource_limits": "cgroups_v2",
"network_isolation": "Secure_Mesh"
},
"verification": {
"proof_of_compute": "periodic_checkpoints",
"result_validation": "Cryptographic_Proofs",
"payment_condition": "attestation_receipt",
"dispute_resolution": "decentralized_arbitration"
}
}transport: HTTP/3 + QUIC encoding: MessagePack / Protobuf discovery: DNS-SD + provider registries auth: DID + UCAN + OAuth2 (legacy) payment: Stablecoins / Lightning / provider tokens orchestration: Container orchestrators + schedulers monitoring: OpenTelemetry + Prometheus settlement: streaming or epoch-based (per hour/day)
Once compute.md becomes the standard compute gateway:
compute.md
ยฉ 2025 compute.md authors ยท MIT License ยท Exploratory specification